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Abstract: Described herein is a synthetic strategy for the total
synthesis of (£)-phomoidride D. This highly efficient and
stereoselective approach provides rapid assembly of the
carbocyclic core by way of a tandem phenolic oxidation/
intramolecular Diels—Alder cycloaddition. A subsequent Smi,-
mediated cyclization cascade delivers an isotwistane inter-
mediate poised for a Wharton fragmentation that unveils the
requisite bicyclo[4.3.1]decene skeleton and sets the stage for
synthesis completion.

Since the isolation and structural elucidation of the two
fungal secondary metabolites, phomoidride A (1; CP-
225,917) and phomoidride B (2; CP-263, 114; Figure 1), by
researchers at Pfizer,!'! numerous groups have devoted efforts
toward developing new synthetic strategies to construct these
natural products.”! While the cholesterol-lowering and anti-
cancer properties displayed by 1 and 2 certainly motivated
synthetic efforts, there is little doubt that the unique and
complex architecture inherent to the phomoidrides has served
as the primary inspiration to what has proven to be a variety
of markedly creative approaches,>* and four completed total
syntheses.l! Studies toward these targets also led to the
discovery of two other congeners, phomoidride C and pho-
moidride D (3 and 4, respectively, Figure 1),** which differ
in the relative stereochemistry at C7. While previous synthetic
efforts have been primarily directed toward the densely
functionalized carbocyclic phomoidride core, biosynthetic
work has focused on biogenesis and congener interconver-
sion.l”! Herein we describe a novel synthetic strategy that
employs two cascade sequences en route to a successful
synthesis of (4)-phomoidride D (4).”

As illustrated retrosynthetically in Scheme 1, our plan for
accessing 4 called for late-stage introduction of the maleic
anhydride moiety, an endgame akin to those reported by the
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Figure 1. The phomoidride family.
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Scheme 1. Retrosynthetic analysis of phomoidride D. Ns = o-nitroben-
zenesulfonyl.

groups of Fukuyama®! and Shair.® In contrast to the latter
efforts, our strategy employs a regioisomeric $-ketoester that
derives from the ketone S, which was seen as arising from
Wharton fragmentation of the isotwistane 6. Although
increasing structural complexity in a retrosynthesis appears
counterintuitive from a strategic planning perspective, we
envisioned accessing 6 by a ketyl-initiated cascade cyclization
wherein an exo-methylene lactone serves as a lynchpin and

Wiley Online Library

19901


http://dx.doi.org/10.1002/ange.201712369
http://dx.doi.org/10.1002/anie.201712369
http://orcid.org/0000-0002-9066-5588
http://orcid.org/0000-0002-9066-5588
https://doi.org/10.1002/anie.201712369

GDCh
~—

1992

bromide as the nucleofuge. The cyclization cascade precursor
(7) would arise from the [2.2.2] bicycle 8, the product of
a tandem phenolic oxidation/inverse-electron-demand intra-
molecular Diels-Alder (IMDA) cycloaddition, wherein the
phenol 9 serves as a substrate. This highly efficient combina-
tion of two cascade reactions allows global control of the
relative stereochemistry and introduces all but five carbon
centers present in 4. The phenol 9 would arise from the readily
available precursors 10, 11, and 12.1¢7487]

In accord with our synthetic plan, 1,5-dibromopentane
(11) was homologated to 13 by exposure to sodium acetylide
followed by monomethylation of the intermediate diyne
(Scheme 2). Deprotonation of 13 at the terminal alkyne
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Scheme 2. Synthesis of the a-bromoketone 16. DIBAL-H =diisobutyla-
lumminum hydride, DMS = dimethylsulfide, NBS = N-bromosuccini-
mide, THF =tetrahydrofuran, TMS = trimethylsilyl.

allowed selective reduction to the enyne 14. Subsequent
hydroalumination/iodination of 14 delivered the vinyl iodide
15, which, after conversion into the corresponding cuprate
was advanced by conjugate addition to the known a,f3-
unsaturated ketone 12.5° Under the illustrated TMSCI-
accelerated conditions,""! this latter reaction furnishes an
intermediate silyl enol ether which, upon in situ exposure to
N-bromosuccinimide (NBS), delivers 16.

Having developed an efficient five-step sequence to the a-
bromoketone 16, we next focused on the aromatic coupling
partner. It is worth noting that a considerable number of
experiments over many years indicated that the planned
IMDA would likely be successful if the diene component were
sufficiently electron poor. In efforts to satisfy this electronic
requirement, the o-nitrobenzenesulfonyl (nosyl) moiety was
discovered to be sufficiently electron withdrawing and stable
to subsequent synthetic steps. Thus, as illustrated in Scheme 3,
commercially available 1,2-dihydroxybenzaldehyde (10) was
sequentially nosylated, allylated, and exposed to Dakin
oxidation conditions to furnish 18. Alkylation of 18 with 16
furnished an intermediate ketone that was protected under
modified Noyori conditions.") Exposure of the derived acetal
(20) to palladium-mediated allyl removal and a subsequent
Pb(OAc),-induced tandem aryl oxidation cycloaddition
sequence, provided the a-hydroxy ketones 8a and 8b as an
inseparable 1:3 mixture of diastereoisomers.!"”!

Interestingly, treating the derived mixture with TMSCI
followed by the lithium enolate of methyl 3-(dimethylami-
no)propionate results in conversion of only the major
diastereomer (8b) into the corresponding aldol product 22
(Scheme 4)."! Subsequent nosyl removal, Cope elimination,
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Scheme 3. Tandem phenolic oxidation/Diels—Alder cascade. DCE=1,2-
dichloroethane, DCM = dichloromethane.

and desilylation provides an intermediate (24) containing an
exo-methylene lactone poised to serve as a lynchpin in the
second cascade reaction. Effecting this latter event begins by
condensing 24 with the dibromide 25 to afford the Stork/Ueno
bromoacetal 7.""! Exposure of 7 to freshly prepared Sml,
promotes a smooth 5-exo-trig/5-exo-tet cyclization cascade!'
that delivers the key 6 in excellent yield. Importantly, this
sequential C—C bond-forming event sets stereochemistry at
the imbedded quaternary center and positions the core
structure for fragmentation to the bicyclo[4.3.1]decene. To
this end, we first converted 6 into the corresponding acetate
and then unveiled the latent tertiary alcohol by transacetal-
ization with 1,3-propanedithiol. Introduction of the requisite
nucleofuge was accomplished by mesylation of the derived
alcohol to provide the fragmentation substrate 26. To our
delight, exposure of 26 to KOH in a THF/MeOH solvent
mixture resulted in Wharton fragmentation and installation of
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Scheme 4. Synthesis of the [4.3.1]-bicyclic core by radical cyclization

cascade and a Wharton fragmentation. DMAP = 4-(N,N-dimethylami-
no)pyridine, LDA= lithium diisopropylamide, m-CPBA = m-chloroper-
benzoic acid, Ms = methanesulfonyl, TBAF =tetra-n-butylammonium
fluoride.
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the bridgehead olefin to furnish 5. Unsurprisingly, the
reaction conditions required for fragmentation also resulted
in varying amounts of a diol (27) derived from ring opening of
the spiroacetal, an unwanted side-reaction that could be
reversed by treating the reaction mixture with nosyl chloride
and triethylamine. The illustrated stereochemical outcome of
the two cascade sequences was firmly established by single-
crystal X-ray analysis.

With ready access to the bicyclic carbon framework, we
turned attention to constructing the maleic anhydride moiety
and began exploring conditions for the regio- and chemo-
selective acylation of 5. After some experimentation, we were
gratified to discover that Mander’s reagent (28),!"” employed
with Et,0 as the solvent under thermodynamic deprotonation
conditions, not only minimized O acylation but led to
predominately the desired regioisomer 29 as a mixture of
keto—enol tautomers, favoring the latter.!'® Subsequent trans-
formation of 29 into the corresponding enol triflate 31, using
Comins’ reagent (30),'”) enabled maleic anhydride installa-
tion by a palladium-mediated carbonylation (Scheme 5). At

Q _<5:> LIHMDS, HMPA
Y e

N M
C280 e

Et,0, -40 °C to rt

o
s (60% yield)
)

Pd(OAc),, P(2-furyl)s
i-PrNEt, H,0

CO, DMF, 90 °C
(73% yield)

Scheme 5. Preparation of the maleic anhydride by palladium-mediated
carbonylation. DMF = N,N-dimethylformamide, HMDS = hexamethyldi-
silazide, HMPA = hexamethylphosphoramide.

this point, all that was required to complete 4 was depro-
tection of 32 followed by oxidation of the derived aldehyde.

In the latter events, numerous methods to remove the
dithiane moieties, including both alkylation and oxidation
processes, were attempted but often led to the formation of
complex mixtures instead of the desired keto-aldehyde.
Eventually, we found that exposing 32 to excess iodomethane
(80 equiv) in the presence of calcium carbonate (CaCOs;)
resulted in clean conversion into an intermediate keto-
aldehyde which, upon Pinnick oxidation using sodium chlor-
ite (NaClO,), sodium dihydrogenphosphate monohydrate
(NaH,PO,H,0) as buffer, and 2-methyl-2-butene as hypo-
chlorous acid scavenger, furnished (+)-phomoidride D (4) in
excellent yield (Scheme 6).

In conclusion, a total synthesis of (+)-phomoidride D has
been achieved by employing a novel strategy that requires 26
steps in its longest linear sequence. From the outset, the
primary motivation for pursuing a synthesis of this intriguing
molecule was the challenge of developing a non-obvious yet
efficient approach, an endeavor that invariably advances the
forefront of strategies and tactics in the science of synthesis.
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Scheme 6. Completion of the total synthesis of (+)-phomoidride D.
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